Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid.

نویسندگان

  • Jennifer A Tate
  • Zhongfu Ni
  • Anne-Cathrine Scheen
  • Jin Koh
  • Candace A Gilbert
  • David Lefkowitz
  • Z Jeffrey Chen
  • Pamela S Soltis
  • Douglas E Soltis
چکیده

On both recent and ancient time scales, polyploidy (genome doubling) has been a significant evolutionary force in plants. Here, we examined multiple individuals from reciprocally formed populations of Tragopogon miscellus, an allotetraploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. pratensis. Using cDNA-AFLPs followed by genomic and cDNA cleaved amplified polymorphic sequence (CAPS) analyses, we found differences in the evolution and expression of homeologous loci in T. miscellus. Fragment variation within T. miscellus, possibly attributable to reciprocal formation, comprised 0.6% of the cDNA-AFLP bands. Genomic and cDNA CAPS analyses of 10 candidate genes revealed that only one "transcript-derived fragment" (TDF44) showed differential expression of parental homeologs in T. miscellus; the T. pratensis homeolog was preferentially expressed by most polyploids in both populations. Most of the cDNA-AFLP polymorphisms apparently resulted from loss of parental fragments in the polyploids. Importantly, changes at the genomic level have occurred stochastically among individuals within the independently formed populations. Synthetic F(1) hybrids between putative diploid progenitors are additive of their parental genomes, suggesting that polyploidization rather than hybridization induces genomic changes in Tragopogon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytonuclear Coordination Is Not Immediate upon Allopolyploid Formation in Tragopogon miscellus (Asteraceae) Allopolyploids

Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential int...

متن کامل

Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping.

Tragopogon miscellus (Asteraceae) is an evolutionary model for the study of natural allopolyploidy, but until now has been under-resourced as a genetic model. Using 454 and Illumina expressed sequence tag sequencing of the parental diploid species of T. miscellus, we identified 7782 single nucleotide polymorphisms that differ between the two progenitor genomes present in this allotetraploid. Va...

متن کامل

Natural hybrids between Tragopogon mirus and T. miscellus (Asteraceae): a new perspective on karyotypic changes following hybridization at the polyploid level.

UNLABELLED PREMISE OF THE STUDY Natural hybrids have formed in Pullman, Washington, United States between the recently formed allotetraploids Tragopogon miscellus and T. mirus. In addition to forming spontaneously, these hybrids are semifertile, propagating via achenes. Previous work indicated that the tetraploid hybrids have genetic contributions from three progenitor diploids: T. dubius, T...

متن کامل

Rapid, Repeated, and Clustered Loss of Duplicate Genes in Allopolyploid Plant Populations of Independent Origin

The predictability of evolution is debatable, with recent evidence suggesting that outcomes may be constrained by gene interaction networks [1]. Whole-genome duplication (WGD; polyploidization-ubiquitous in plant evolution [2]) provides the opportunity to evaluate the predictability of genome reduction, a pervasive feature of evolution [3, 4]. Repeated patterns of genome reduction appear to hav...

متن کامل

Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae).

Polyploidy, or whole genome duplication, has played a major role in the evolution of many eukaryotic lineages. Although the prevalence of polyploidy in plants is well documented, the molecular and cytological consequences are understood largely from newly formed polyploids (neopolyploids) that have been grown experimentally. Classical cytological and molecular cytogenetic studies both have show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 173 3  شماره 

صفحات  -

تاریخ انتشار 2006